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Let Y be a two-dimensional subspace of l (4)
� . A formula for a minimal projection

from l (4)
� onto Y will be presented. Also, a complete characterization of the unicity

of this minimal projection will be given � 1997 Academic Press

1. INTRODUCTION

Let X be a normed space and let Y be a linear subspace of X. A bounded
linear operator P : X � Y is called a projection if Py= y for any y # Y.
Denote by P(X, Y) the set of all projections from X onto Y. A projection
Po is called minimal if

&Po&=*(Y, X )=inf[&P& : P # P(X, Y )]. (1.1)

The significance of this notion can be illustrated by the following well
known inequality

&x&Px&�&Id&P& } dist(x, Y)�(1+&P&) } dist(x, Y)

for every x # X and P # P(X, Y ). For more complete information about this
subject the reader is referred to [BarP, BarL, BlCh, ChaM, CheL, CheM,
CheP, Fr, Ki, LE1, LE2, LE3, Od, OdL, Ro, Wo, Wu]. In general, there
are two principal methods for seeking minimal projections. The first of
them is based on Rudin's theorem (see e.g. [Ru, Chap. 5; CheL; or Wo.
p. 118]). In [Wo, Chap. III B] some applications of Rudin's theorem are
presented (see also [CheL]). Unfortunately this method cannot be applied
if any minimal projection is not a co-minimal one. (Recall that a projection
Po is co-minimal if

&Id&Po&=dist(Id, P(X, Y )).)
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For example, this situation holds true for hyperplanes in l (n)
� (see e.g.

[BlCh]). The second method is based on various Kolmogorov-type
criteria. For more precise information about them the reader is referred to
[BarL, BlCh, LE1, LE2, LE3, OdL]. Unfortunately, in many important
cases the exact value of the constant *(Y, X ) as well as a formula for mini-
mal projection is unknown. In this paper we present a new formula for a
minimal projection. We calculate the constant *(Y, l (4)

� ) (R4 with the maxi-
mum norm) for any two-dimensional subspace Y of l (4)

� . We also determine
a minimal projection in this case (Theorem 3.1) and present a complete
characterization of its unicity.

Now let us introduce some notation. By S(X) we denote the unit sphere
in a normed space X and by ext(S(X )) the set of its extremal points. The
symbol L(X, Y ) stands for the space of all linear, continuous mappings
from X into Y. If Y is a linear subspace of X we write

LY=[L # L(X, Y) : L|Y=0]. (1.2)

It is easy to show that

*(Y, X )=dist(P, LY) (1.3)

for every P # P(X, Y ). If X=l (n)
� (Rn with the maximum norm ) the symbol

Tij , i, j # [1, ..., n], stands for a transposition

Tij (x1 , ..., xi , ..., xj , ..., xn)=(x1 , ..., xj , ..., xi , ..., xn), (1.4)

where x=(x1 , ..., xn) # l (n)
� .

Now we will present some notions and results which will be of use later.
Let X be a normed space and let x # X. Set

E(x)=[ f # ext(S(X*)) : f (x)=&x&] (1.5)

Definition 1.1 [SW, Definition 5.1]. Let X be a real normed space,
x # X"[0], and let Y be an n-dimensional linear subspace of X. A set
I=[ f1 , ..., fk]/ext(S(X*)) is called an I-set if there exist positive numbers
*1 , ..., *k such that

:
k

i=1

*i fi |Y=0. (1.6)

If moreover I/E(x) then I is called an I-set with respect to x. An I-set
I is said to be minimal if there is no proper subset of I which forms an I-set.
A minimal I-set is called regular iff k=n+1 (by the Carathe� odory theorem
n+1 is the largest possible number).
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The role of regular I-sets is illustrated by the next theorem.

Theorem 1.2 [SW, Theorem 5.8]. Let X be a real normed space and
let x # X"Y, y # Y. If there exists a regular I-set for x& y then y is a
strongly unique best approximation to x in Y. We recall that y # Y is a
strongly unique best approximation to x # X if there is r>0 depending only
on x such that for any w # Y

&x&w&�&x& y&+r } &y&w&.

From [RS] immediately follows the next theorem.

Theorem 1.3 [RS]. Let X be a finite-dimensional normed space. Then

ext(S(L*(X)))=ext(S(X*))�ext S(X )), (1.7)

where (x*�x)(L)=x*(Lx) for x # X, x* # X*, and L # L(X ).

Lemma 1.4. (see e.g. [BlCh]). Assume X is a normed space and let
Y/X be a subspace of codimension k, Y=�k

i=1 ker( fi), where f i # X* are
linearly independent. Let P # P(X, Y ). Then there exist y1, ..., yk # X
satisfying f i ( y j)=$ij for i, j=1, ..., k such that

Px=x& :
k

i=1

f i (x) yi for x # X. (1.8)

On the other hand, if y1, ..., yk # Y satisfy f i ( yj)=$ij then the operator
P=Id&�k

i=1 f i ( } ) yi belongs to P(X, Y).

Lemma 1.5 (see e.g. [LE3, l. 2.4.4, p. 72]). Let X=l (n)
� and let Y=

ker( f )&ker(g), where f, g # S(X*) are linearly independent. Let P # P(X, Y ),
P=Id& f ( } ) z& g( } ) w, where z, w # X. Then

&ei b P&=|1& fi zi& gi wi |+ :
j{i

| fj zi+ gjwi | (1.9)

where ei (x)=xi for x # X, i=1, ..., n. Moreover, ei (Px)=&ei b P&, for
x # S(l (n)

� ) iff

sgn( fjzi+ gjwi)=&sgn(xi) for j{i

(if fj zi+ gj wi {0) and

sgn(1& fizi& giwi)=sgn(xi)

(if 1& fi zi& gi wi {0).
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Lemma 1.6 (see e.g. [OdL, Prop. II.7.1, p. 82]). Let Y1 , Y2 be two
linear subspaces of a normed space X. Suppose that there is a linear isometry
T of X onto itself such that T(Y1)=Y2 . Then *(Y1 , X )=*(Y2 , X ).

Definition 1.7. Let X be a normed space and let Y1 , Y2 be two linear
subspaces of X. It is said that Y1 is equivalent to Y2 if there is a linear
isometry T of X onto itself such that T(Y1)=Y2 .

2. TECHNICAL LEMMAS

Lemma 2.1. Let Y/l (n)
� be a subspace of codimension two, Y=

ker( f ) & ker( g), where f, g # S(l (n)
1 ) are two linearly independent func-

tionals. Then there is a linear subspace Y1 /l (n)
� equivalent to Y such

that Y1=ker( f 1) & ker(g1) where f 1, g1 # S(l (n)
1 ) are of the form

f 1=( f 1
1 , 0, f 1

3 , ..., f 1
n), g1=(0, g1

2 , ..., g1
n), f 1

1>0, g1
2>0, and f 1

i , g1
i �0 for

i=3, ..., n.

Proof. Since f, g are linearly independent,

det(Aij)=det \ fi

fj

gi

gj+{0

for some i{ j. Consider two systems of linear equations

Aij u=(1, 0), Aijw=(0, 1).

Let u=(u1 , u2) and w=(w1 , w2) be the solutions of these systems. Put
h=T1i b T2 j (u1 f +u2 g), l=T1i b T2 j (w1 f +w2 g) (see (1.4)). We can
assume without loss of generality that h, l # S(l (n)

1 ). Put Z1=ker(h) & ker(l ).
If h, l�0, then h, l, Z1 satisfy the requirements of the lemma. If not, then
consider k=|h|, m=(0, l2 , m3 , ..., mn), where mi=|li | if hi=0 and
mi=li sgn(hi) in the opposite case. If m�0 then k, m, and Z1=
ker(k) & ker(m) satisfy the requirements of the lemma. If not, choose io�3
such that

kio �mio=max[ki�mi : mi<0].

Put

f 1=T1io(k), u=T1io(k&(kio �mio) } m)

and

g1=(u1 , &u2 , u3 , ..., un).
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It is clear that f 1, g1, Y1=ker( f 1) & ker(g2) satisfy the requirements of the
lemma (we can assume without loss of generality that &g&1=1). The
lemma is proved.

Lemma 2.2. Let f, g # S(l (4)
1 ) be of the form

f =( f1 , 0, f3 , f4), g=(0, g2 , g3 , g4),
(2.1)

fi>0, for i{2 gi>0 for i{1.

Put Y=ker( f ) & ker(g)/l (4)
� . Then &ei |Y&=1 for i=1, 2, 3, 4 if and only

if

fi�1�2, gi�1�2 for i=1, 2, 3, 4, (2.2)

}det \ f1

g2

f3

g3+}� }det \ f3

g3

f4

g4+} (2.3)

and

}det \ f1

g2

f4

g4+}� }det \ f3

g3

f4

g4+} . (2.4)

Proof. Suppose that that (2.2) does not hold. We may assume without
loss of generality that fi>1�2 for some i{2. Then it is clear that
&ei | ker( f )&<1 and consequently &ei | Y&<1, a contradiction. If (2.3) or
(2.4) are not satisfied, then consider h= f +(& f3 �g3) } g and l= f +
(& f4 �g4) } g. It is easy to see by definitions that |hi |>�j{i |hj | for i=1
or i=2 or |li |>�j{i |lj | for i=1 or i=2. Reasoning as above we get a
contradiction. Now assume that (2.2), (2.3), and (2.4) are satisfied. To
prove that &ei |Y &=1 for i=3, 4 consider a system of linear equations

*1 f1+ f3& f4=0,

*2 g2+ g3& g4=0.

By (2.2), |*i |�1 for i=1, 2 which gives the result. To prove that
&ei |Y &=1 for i=1, 2 consider a system

&f1+*1 f3+*2 f4=0,

&g2+*1 g3+*2 g4=0.

By Cramer's rule, (2.3), and (2.4), |*i |�1. The lemma is proved.

Corollary 2.3. Let Y be as in Lemma 2.2. If in (2.2), (2.3), or (2.4) we
have equality then Y can be approximated (in the sense of the Banach�Mazur
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distance) by a sequence of two-dimensional subspaces Yn /l (4)
� with

&ei |Yn &<1 for some i # [1, 2, 3, 4].

Proof. Suppose that we have equality in (2.2). we may assume without
loss of generality that fi=1�2 for some i=1, 3, 4. Take for n # N, f n # S(l (4)

1 )
with f n

i >1�2 such that f n � f if n � �. Put Yn=ker( f n) & ker(g). It is
clear that &ei |Yn &<1 and d(Y, Yn) � 1. (The symbol d(Y, Yn) denotes the
Banach�Mazur distance between Y and Yn). If we have equality in (2.3) or
(2.4), the same reasoning applied to the functionals h, l (see the proof of
Lemma 2.2) gives the result.

Lemma 2.4. Let f, g be as in Lemma 2.2. Suppose that (2.2) is satisfied.
If f3> g3 (<g3 , resp.) and f4> g4 (<g4 , resp.) then (2.3) or (2.4) does not
hold.

Proof. We can assume without loss of generality that f3> g3 and
f4> g4 . Since & f &1=&g&1=1, g2> f1 . Hence

}det \ f1

g2

fi

gi+}=det \ fi

gi

f1

g2+
for i=3, 4. If

det \ f3

g3

f4

g4+�0

then

det \ f4

g4

f1

g2+= f4& g4+det \ f3

g3

f4

g4+
>det \ f3

g3

f4

g4+
which contradicts (2.4). If

det \ f4

g4

f3

g3+>0,

by the same reasoning we infer that (2.3) is not satisfied.

Lemma 2.5. Suppose that f, g # S(l (4)
1 ) satisfy (2.1), (2.2), (2.3), and (2.4)

(with the strict inequalities). Let f3>g3 . Define

, j
1=ej �x1=(1, 1, &1, &1) for j=1, 2,

,2=e3 �x3=(&1, &1, 1, &1)

97MINIMAL PROJECTIONS FROM l (4)
�



File: 640J 301407 . By:CV . Date:19:12:96 . Time:10:51 LOP8M. V8.0. Page 01:01
Codes: 2686 Signs: 1132 . Length: 45 pic 0 pts, 190 mm

,3=e3 �y3=(&1, 1, 1, &1)

,4=e4 �x4=(&1, &1, &1, 1)

,5=e4 �y4=(1, &1, &1, 1).

Then [, j
1 , ..., ,5]( j=1, 2) is a minimal regular I-set (see Definition 1.1) with

respect to the LY (see (1.2)).

Proof. Suppose that j=1. Consider the equation

,1
1 | LY+ :

5

i=2

*i b ,i | LY=0 (2.5)

with unknown variables *i , i=2, 3, 4, 5. Note that dim(LY)=4 and the
mappings M1= f ( } ) w1 , M2= g( } ) w1 , M3= f ( } ) w2 , and M4= g( } ) w2

form a basis of LY . (Here w1=(& f3� f1 , &g3 �g2 , 1, 0), w2=(& f4 � f1 ,
&g4 �g2 , 0, 1).) Hence (2.5) is equivalent to

*2 f (x3)+*3 f ( y3)=( f3 � f1) } f (x1)
(2.6)

*2 g(x3)+*3 g( y3)=( f3 � f1) } g(x1)

and

*4 f (x4)+*5 f ( y4)=( f4 � f1) } f (x1)
(2.7)

*4 g(x4)+*5 g( y4)=( f4 � f1) } g(x1)

Applying the Cramer rule we easily get *i=( f3 � f1) } Ai �C for i=2, 3 and
*i=( f4 � f1) } Bi&1�D for i=4, 5, where

A2=det \ f (x1)
g(x1)

f ( y3)
g( y3)+ A3=det \ f (x3)

g(x3)
f (x1)
g(x1)+

C=det \ f (x3)
g(x3)

f ( y3)
g( y3)+ B3=det \ f (x1)

g(x1)
f ( y4)
g( y4)+

B4=det \ f (x4)
g(x4)

f (x1)
g(x1)+ D=det \ f (x4)

g(x4)
f ( y4)
g( y4)+ .

To finish the proof it is sufficient to show that C { 0, D { 0,
sgn(Ai)=sgn(C) for i=2, 3 and sgn(Bi&1)=sgn(D) for i=4, 5. By (2.1),
(2.2), (2.3), (2.4), and elementary calculations we get

A2=&[(1&2g2)(1&2 f3)+(1&2 f1)(1&2g4)]<0,

C=&(1&2 f3) } 2g2<0.
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Moreover, since f3>g3 , by Lemma 2.2 and 2.4

A3=det \2 f3&1
2g3&1

2 f1&1
2g2&1+

=2 } det \ f1

g2

f4

g4+&2 } det \ f3

g3

f4

g4+<0.

Analogously,

B3=det \2 f1&1
2g2&1

1&2 f3

2g4&1+=(1&2 f1)(1&2g4)+(1&2 f3)(1&2g2)>0,

D=det \2 f4&1
2g4&1

1&2 f3

2g4&1+=(1&2g4) 2 f1>0,

B4=det \2 f4&1
2g4&1

2 f1&1
2g2&1+=2 } det \ f1

g2

f3

g3++2 } det \ f3

g3

f4

g4+>0.

Consequently, *i>0 for i=2, ..., 5 which gives the result.
The same reasoning applies to ,2

i , since gi�g2>0 for i=3, 4. The lemma
is proved.

Lemma 2.6. Let f, g # S(l (4)
1 ) be of the form f =( f1 , 0, f3 , f4),

g=(0, g2 , g3 , g4). Assume that f, g satisfy (2.1) and

f3 g4& g3 f4>0. (2.8)

Define

h1=(( f3 �g3) } g4& f4 , 0, ( f3 �g3) } g2 , f1),

l1=(0, f3&( f4 �g4) } g3 , ( f4 �g4) } g2 , f1),

h=h1�&h&, l=l�&l&.

Then h3 l4&l3h4>0 and

f3> g2+ g3(1&2 f1),

if and only if

h3<l2+l3(1&2h1).

Proof. Note that

h3 l4&l3h4=(&h1& }&l1&)&1) } f1 g2( f3 �g3& f4 �g4)>0

99MINIMAL PROJECTIONS FROM l (4)
�



File: 640J 301409 . By:CV . Date:19:12:96 . Time:10:51 LOP8M. V8.0. Page 01:01
Codes: 2408 Signs: 786 . Length: 45 pic 0 pts, 190 mm

by (2.1) and (2.8). Now suppose that h3<l2+l3(1&2h1). This means that

h1
3 �&h1&<(l1

2&h1&+l1
3(&h1&&2h1

1))�(&h1& }&l1&)

and consequently

h1
3 &l1&<(l1

2+l1
3) &h1&&2l1

3h1
1 . (2.9)

Now we rewrite (2.9) in terms of the coordinates of f and g and we show
that the following 10 inequalities are equivalent:

( f3�g3) } (g2 �g4)( f3 g4& f4 g3+ f4 g2+ f1 g4)

<[( f3 g4& f4 g3+ f4 g2)( f3 g4& f4 g3+ f3 g2+ f1 g3)

&2 f4 g2( f3 g4& g3 f4)]�(g4 g3)

f3 g2( f3 g4& f4 g3)+ f3 g2( f4 g2+ f1 g4)

<( f3 g4& f4 g3)( f3 g4& f4 g3+ f3 g2+ f1 g3& f4 g2)

+ f4 g2( f3 g2+ f1 g3)

f3 g2( f4 g2+ f1 g4)

< f4 g2( f3 g2+ f1 g3)

+( f3 g4& f4 g3)( f3 g4& f4 g3& f4 g2+ f1 g3)

f3 g2 f1 g4

< f4 g2 f1 g3

+( f3 g4& f4 g3)( f3 g4& f4 g3& f4 g2+ f1 g3)

(by (2.8)) if and only if

g2 f1< f3 g4& f4 g3+ f1 g3& f4 g2

0< f3 g4& g2( f4+ f1)+ g3( f1& f4)

0< f3 g4& g2(1& f3)+ g3( f1& f4)

0<& g2+ f3(1& g3)+ g3( f1& f4)

f3> g2+ g3( f3+ f4& f1)

f3> g2+ g3(1&2 f1).

The lemma is proved.
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Lemma 2.7. Let f, g # S(l (4)
1 ) be as in Lemma 2.6. Put h=( f4 , 0, f3 , f1),

l1=(0, ( f4 �g4) } g2 , f3&( f4 �g4) } g3 , f1), l=l1�&l1&. Then the following two
conditions are equivalent:

f3� g2+ g3(1&2 f1) and g4> f1+ f4(1&2g2) (2.10)

h3�l2+l3(1&2h1) and l4<h1+h4(1&2h2). (2.11)

Moreover, h3 l4&h4 l3>0.

Proof. Note that the following seven conditions are equivalent:

h3�l2+l3(1&2h1)

h3 } &l1&�l1
2+l1

3(1&2h1)

( f2 �g4) } ( f4 g2+ f3 g4& f4 g3+ f1 g4)�[ f4 g2( f3 g4& f4 g3)(1&2 f4)]�g4

f3 g2� g2& f1 g3& f3 g4+ f4 g3

f3(g2+ g4)� g2+ g3( f4& f1)

f3(g2+ g3+ g4)� g2+ g3( f3+ f4& f1)

f3� g2+ g3(1&2 f1).

Analogously, by elementary calculations, the following eight conditions are
equivalent:

l4<h1+h4(1&2l2)

l1
4<h1 } &l1&+h4(&l1&&2l1

2)

f1 g4<( f1+ f4)( f4 g2+ f3 g4& f4 g3+ f1 g4)&2 f4 g2 f1

f1 g4+ f1 f4 g2<f1 g4( f3+ f1+ f4)+ f4( f4 g2+ f3 g4& f4 g3& f1 g3)

f1 g2<f4 g2+ f3 g4& f4 g3& f1 g3

f3 g4> f4(g3& g2)+ f1(g2+ g3)

g4( f1+ f3+ f4)> f1(g2+ g3+ g4)+ f4(g4+ g3& g2)

g4> f1+ f4(1&2g2).

This proves the equivalence of (2.10) to (2.11).
Note that

h3 l4&h4 l3=&l1&&1 } ( f3 f1& f1( f3&( f4�g4) } g3))

= f1 f4 g3 �(g4 } &l1&)>0.

The lemma is proved.
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3. THE MAIN RESULTS

Now we can prove the main result of this paper.

Theorem 3.1. Let f, g # Sl (4)
1 ) satisfy (2.1), (2.2), (2.3), and (2.4) with

strict inequalities. Assume additionally that f3>g3 and

f3� g2+ g3(1&2 f1),
(3.1)

g4� f1+ f4(1&2g2).

Put Y=ker( f ) & ker(g). Then *(Y, l (4)
� )=max[a, b], where

a=1+(g2 �(1&2g2)+ g3(1&2 f1)�[(1&2g2)(1&2 f3)]

+ g4 �(1&2g4))&1 (3.2)

b=1+( f1 �(1&2 f1)+ f4(1&2g2)�[(1&2 f1)(1&2g4)]

+ f3 �(1&2 f3))&1 (3.3)

Moreover, there is a strongly unique (in particular, a unique) minimal
projection. This projection is determined by the vectors z, w # R4, f (z)=
g(w)=1, f (w)= g(z)=0 (compare with Lemma 1.4) of the form:

z4=0, z3=(a&1)�(1&2 f3), z2=&(g3 �g2) z3 , z1=(1& f3z3)�f1 ;

w4=(a&1)�(1&2g4), w3=0, w2=(a&1&(1&2 f1) z2)�(1&2g2),
(3.4)

w1=&( f4 � f1)w4)

if a�b or

w4=(b&1)�(1&2g4), w3=0, w2=(1& g4w4)�g2 , w1=&( f4 � f1)w4

z4=0, z3=(b&1)(1&2 f3), z2=&(g3 �g2) z3 , (3.5)

z1=(b&1&(1&2g2)w1)�(1&2 f1)

if b>a.

Proof. Suppose a�b and consider a system of equations

,2
1(Id& f ( } ) z& g( } )w)=dg

,i (Id& f ( } ) z& g( } )w)=dg for i=2, 3, 4, 5; (3.6)
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f (z)= g(w)=1, f (w)= g(z)=0,

with unknown variables dg , w=(w1 , ..., w4), z=(z1 , ..., z4), where ,2
1 ,

,i (i=2, ..., 5) are as in Lemma 2.5. By the definition of ,2
1 and ,i (see

Theorem 1.3) (3.6) can be rewritten in the form:

dg&1=(1&2 f1) z2+(1&2g2)w2 ,

dg&1=(1&2 f3) z3+(1&2g3)w3
(3.7)

dg&1=(1&2 f3) z3+(2g4&1)w3

dg&1=(1&2 f4) z4+(1&2g4)w4

dg&1=(2 f3&1) z4+(1&2g4)w4

f (z)= g(w)=1, f (w)= g(z)=0.

From the second and third equation of (3.7) we get

w3=0, z3=(dg&1)�(1&2 f3).

Analogously from the fourth and fifth equation

z4=0, w4=(dg&1)�(1&2g4).

From the first equation we have w2=(dg&1&(1&2 f1) z2)�(1&2g2).
Since g(z)=0, z2=(&g3 �g2) z3 . Applying the formulas for z3 , z2 , w2 , w4

to the equation g(w)=1 we easily get that dg=a, where a is given by (3.2).
Since f (w)=0 and f (z)=1 we obtain w1=(&f1 �f4)w4 , z1=(1& f3 z3)� f1 .

Put Po=Id& f ( } ) z& g(})w, where z, w are the solution of (3.7). By
Lemma 1.4, Po # P(l (4)

� , Y ). Now suppose that we have proved

a=dg=,2
1(Po)=&Po & (3.8)

and

a=dg=,i (Po)=&Po& for i=2, ..., 5. (3.9)

By Lemma 2.5 the functionals ,2
1 , ,i , i=2, ..., 5, form a minimal regular

I-set with respect to LY (see (1.2)). By Theorem 1.3, ,1
1 , ,i # ext(S(l (4)

� ) for
i=2, ..., 5. From (3.8) and (3.9) it follows that this I-set is contained in
E(Po) (see (1.5)). By Theorem 1.2, 0 is a strongly unique best approxima-
tion for Po in LY , which means that Po is a unique minimal projection (see
(1.3)) in the case a�b (see (3.2), (3.3)). To prove (3.8) and (3.9) we show
that

&ei b Po&=dg=a for i=2, 3, 4
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and

&e1 b Po &�a.

By Lemma 1.5,

&ei b Po&=|1& fizi& giwi |+ :
j{i

| fj zi+ gj wi |

for i=1, 2, 3, 4. By the definition of ,2
1 and ,j for j=2, ..., 5 it is necessary

to show that

&ei b Po&=ei (Poxi)=ei (Poyi), for i=3, 4, (3.10)

&e2 b Po &=e2(Pox2). (3.11)

and

&e1 b Po &=e1(Po x2)�a. (3.12)

To prove (3.10), first note that f1z4+ g1w4=0, since z4=0 and g1=0.
Hence if e4(Poz)=&Po& then z1 can be arbitrary. By Lemma 1.5 it is
necessary to show that sgn(1& g4w4)=x4= y4=1, sgn(gj w4)=&xj=
&yj=1 for j=2, 3. But this is true, since w4 , g2 , g3>0 (by (3.2),
dg=a>1). Since w3=0, z3>0, and f2=0 the same reasoning applies for
i=3. Consequently, (3.10) is proved. To show (3.11) we verify that
fj z2+ gjw2�0 for j=3, 4, 1& g2w2>0, and f1z2<0. Since z2=&(g3 �g2)
z3 , z3>0 and w4>0 the last two inequalities hold true. Note that by (2.4)
f3 g4& f4 g3> f1 g4& g2 f4 which is equivalent to (g4 � f4)(1&2 f1)>
1&2g2 . Since z2<0, by the first equation from (3.7), w2>0. Consequently,

(1&2 f1) z2+(g4 �f4)(1&2 f1)w2

>(1&2 f1) z2+(1&2g2)w2=dg&1=a&1>0.

Hence f4z2+ g4w2>0, as desired.
Now note that

f3z2+ g3w2=(g3�g2)(&f3) z3+ g3(1& g4 w4)�g2

=(g3�g2) } ((& f3)(dg&1)�(1&2 f3)+1& g4(dg&1)�(1&2g4)).

Hence

f3 z2+ g3w2�0
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if and only if

(dg&1)( f3 �(1&2 f3)+ g4 �(1&2g4)�1. (3.13)

Since dg=a, by (3.2), the last inequality is equivalent to

f3�[ g2(1&2 f3)+ g3(1&2 f1)]�(1&2g2)

which is the same as the first inequality in (3.1). Hence (3.11) is proved.
To show (3.12), first we verify that z1>0. To do this, note that

f1 z1=1& f3z3 . Hence it is necessary to show that 1& f3 z3>0. Since
z3=(dg&1)�(1&2 f3) this is equivalent to (dg&1)&1> f3 �(1&2 f3)
which immediately follows from (3.13). Moreover, w1=(& f4 �f1) w4<0
since w4 = (a&1)�(1&2g4) > 0. Consequently sgn(1& f1 z1 & g1 w1) = 1
and sgn( f2 z1 + g2 w1) =&1. Now we show that f3 z1+ g3 w1 >0 and
f4 z1+ g4w1�0. First note that the following four inequalities are
equivalent:

f3z1+ g3w1>0

( f3 � f1)(1& f3z3)+(g3 �f1)((& f4) w4)>0
(3.14)

f3&(dg&1)( f3)2�(1&2 f3)&(dg&1) f4 g3 �(1&2g4)>0

(dg&1)&1> f3 �(1&2 f3)+ f4 g3�( f3(1&2g4)).

Since f3> g3 , by (2.3), (3.1), f4 g3 � f3< g4 . Hence (3.14) follows
immediately from (3.13) and consequently f3z1+ g3w1>0. Now note that
the following three conditions are equivalent:

f4z1+ g4w1�0

( f4 � f1)(1& f3 z3)+( f4 � f1)(&g4 w4)�0

1& f3(dg&1)�(1&2 f3)& g4(dg&1)�(1&2g4)�0.

But the last inequality is equivalent to (3.13) which is true. Consequently,
we have proved that &e1 b Po&=e1(Po x2). Hence

&e1 b Po &=(1&2g2)w1+(1&2 f1) z1+1.

To end the proof of (3.12) note that the following five inequalities are
equivalent:
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&e1 b Po &�a=dg

(1&2g2)w1+(1&2 f1)z1+1�dg

&(1&2g2) f4(dg&1)�( f1)(1&2g4)
+(1&2 f1)(1& f3(dg&1)�(1&2 f3))� f1+1�dg

(dg&1)(&1&(1&2g2) f4 �( f1(1&2g4))&(1&2 f1) f3 �( f1(1&2 f3))

�(2 f1&1)� f1

(dg&1)&1

� f1 �(1&2 f1)+(1&2g2) f4 �((1&2g4)(1&2 f1))+ f3 �(1&2 f3).

By (3.3) the last inequality is equivalent to (a&1)&1�(b&1)&1 and
consequently to a�b. So the theorem is proved in the case a�b. If b>a
let us consider Y1=ker( f 1) & ker(g1), where f 1=(g2 , 0, g4 , g3) and
g1=(0, f1 , f4 , f3). Note that Y1 is equivalent (see Definition 1.7) to Y.
Repeating the same argument for Y1 we prove the case b>a for Y.

The proof of Theorem 3.1 is complete.

Remark 3.2. Note that if Y satisfies all the assumptions of Theorem 3.1
apart from (3.1) then by Lemmas 2.6 and 2.7 we can replace Y by an equiv-
alent (see Definition 1.7) subspace Y1=ker(h) & ker(l ), where h, l # S(l (4)

1 )
are as in Lemma 2.6 or 2.7. In this case (3.1) is satisfied. Moreover, (2.1),
(2.2), (2.3), and (2.4) hold true for h, l with the strict inequalities (these
conditions are invariant under linear isometry). Consequently, applying
Theorem 3.1 to Y1 , we get the result for Y. If f3� g3 then from (2.3), (2.4),
and Lemma 2.4 it follows that f4> g4 . To apply Theorem 3.1 in this case
we should consider h=( f1 , 0, f4 , f3), l=(0, g2 , g4 , g3). If (2.2), (2.3), or
(2.4) is not satisfied then to compute *(Y, l (4)

� ) we can apply Theorem 2.5
from [LE2] (see also [LE3, Theorem 2.4.6, p. 73]). For the convenience of
the reader it will be now presented in a simpler form.

Theorem 3.3 [LE2, Theorem 2.5]. Suppose Y=ker( f ) & ker(g)
where f, g # S(l (n)

1 ) satisfy f1�1�2, g2>0, f2= g1=0, and gi�0 for i�3.
If g2�1�2 then *(Y, l (n)

� )=1. Moreover, the vectors z=(1�f1 , 0, ..., 0),
w=(0, 1�g2 , ..., 0) determine a minimal projection (see Lemma 1.4).

If gi<1�2 for i=1, ..., n then

*(Y, l (n)
� )=1+\ :

n

i=1

gi�(1&2gi)+
&1

.

Moreover, the vectors z=(1� f1 , 0, ..., 0) and w=(w1 , ..., wn) where
wi=(*(Y, l (n)

� )&1)�(1&2gi) for i�2 and w1=&(�i{1 fiwi)�f1 determine a
minimal projection in this case.
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Remark 3.4. By Lemmas 1.6 and 2.1, Theorems 3.1 and 3.3 permit us
to calculate *(Y, l (4)

� ) for any two-dimensional subspace Y of l (4)
� . A com-

plete characterization of the unicity of minimal projection in the case
considered in Theorem 3.3 can be found in [LE2, Th. 3.1, 3.3, 3.4] or in
[LE3, Th. 2.5.1, 2.5.3, 2.5.4, pp. 75�78].

Example 3.5. Take f =(2�5, 0, 2�5, 1�5), g=(0, 2�5, 1�5, 2�5), and let
Y=ker( f ) & ker(g). Then we have

}det \ f1

g2

f3

g3+}=2�25;

}det \ f1

g2

f4

g4+}=2�25;

}det \ f3

g3

f4

g4+}=3�25.

Hence it is easy to see that (2.1), (2.2), (2.3), and (2.4) are satisfied. Since

g2+ g3(1&2 f1)= f1+ f4(1&2g2)=2�5+1�25>2�5= f3= g4 ,

(3.1) is satisfied too. Consequently, by Theorem 3.1, *(Y, l (4)
� )=1+1�5.

Example 3.6. Let f=(1�4+3c, 0, 1�2&5c, 1�4+2c), g=(0, 2�5, 1�5, 2�5),
and Y=ker( f ) & ker(g). It is easy to verify as in the previous example that
(2.1), (2.2), (2.3), and (2.4) are satisfied for sufficiently small c>0. But the
second inequality in (3.1) does not hold. Then applying Lemma 2.7 we can
consider an equivalent subspace Y1=ker(h) & ker(l ). Here h, l are as in
Lemma 2.7. Hence the assumptions of Theorem 3.1 are satisfied. In our
situation

h=(1�4+2c, 0, 1�2&5c, 1�4+3c), l=(0, 2+16c, 3&48c, 2+24c)�(7&8c).

Hence by Theorem 3.1

*(Y, l (4)
� )=1+max[(2+16c)�(3&40c)+(3&48c)(1&8c)�(3&40c)20c

+(2+24c)�(3&56c))&1,

(1+8c)�(2&16c)+(1+12c)(3&40c)�(2&16c)(3&56c)+(1&10c)�20c)&1].

Example 3.7. Let f =(9�32, 0, 7�16, 9�32), g=(0, 9�32, 9�32, 7�16). It is
also easy to verify that in this case (2.1), (2.2), (2.3), and (2.4) are satisfied.
However, in this case, both inequalities in (3.1) do not hold true. Then by
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applying Lemma 2.6 we can consider an equivalent subspace Y1=
ker(h) & ker(l ). Here h, l are as in Lemma 2.6. Hence the assumptions of
Theorem 3.1 are satisfied. In our situation

h=(115�322, 0, 9�23, 81�322), l=(0, 115�322, 81�322, 9�23).
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